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Rotating elliptic cylinders in a viscous fluid 
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Numerical solutions are presented for laminar incompressible fluid flow past a 
rotating thin elliptic cylinder either in a medium a t  rest a t  infinity or in a parallel 
stream. The transient period from the abrupt start of the body to some later time 
(at which the flow may be steady or periodic) is studied by means of streamlines 
and equi-vorticity lines and by means of drag, lift and moment coefficients. For 
purely rot'ating cylinders oscillatory behaviour from a certain Reynolds number 
on is observed and explained. Rotating bodies in a parallel stream are studied for 
two cases: (i) when the vortex developing a t  the retreating edge of the thin 
ellipse is in front of the edge and (ii) when it is behind the edge. 

1. Brief review 
Laminar flow of an incompressible fluid past a rotating thin elliptic cylinder is 

studied for a medium at rest at infinity and for a parallel stream. The cylinder is 
considered infinitely long so that the problem is two-dimensional in space. For 
convenience in performing numerical analysis an elliptic co-ordinate system 
( ~ ~ 0 )  is introduced which is related to the Cartesian co-ordinates (2, y) through 

~ + i y  = acosh(q+i0), a > 0,  ( 1 )  

where a is the focal distance. 
For an elliptic cylinder rotating with constant angular velocity- R (an assump- 

tion which is made throughout this paper) there is a steady-state so1utio.i for 
potential flow if the reference frame is fixed to the body (Lamb 1945, p. 88): 

$.;2 = - $S2a2[exp {2(7, - r ) }  (1 - 2 sin2 0) - 2(cosh2r - sin2 8) + 2 cosh2y, - I], 

(2) 

$k = o at 7 = rl, (3) 

(4) 

Here +; is the stream function, 7 = rl is the elliptic contour of the body and + R 
is now the angular velocity of the rotating fluid. An arbitrary constant in $i is 
chosen such that $& is zero on the body surface. 

In  the special case of a circular cylinder of radius rl with an imposed circulation 
the stream function is $A = - Rr: (log r - 8r2/r?) with r2 = z2 +y2. Remarkably 

so that 

$& = &Ra2(cosh2 7 - sin2 0 - cosh2 rl + t )  at 7 = co. 
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this solution fulfils the no-slip boundary condition, and is thus a solution for 
viscous fluids. The torque necessary to maintain the steady motion is T = 4npRr2,, 
where p is the dynamic viscosity. The case of transient viscous motion after an 
abrupt start was solved by Mallick (1957) and Lozupone (1967). 

The more complicated problem of a rotating cylinder in a parallel stream with 
constant velocity U can be solved by superposition when linear theories are 
applied. The solution for stead-y-state viscous slow flow past a circular cylinder is 
given by Oseen (1927, p. 179), who superposed his solution for flow past a non- 
rotating cylinder on the solution for a rotating cylinder in quiescent fluid. The 
lift, drag and torque are 

(5) 
4np u 

L = -  npr2, U Q ,  D = - T = 2npQr2,, + - y - log (&Url/v)’ 

where y is the Euler constant and v the kinematic viscosity of the fluid. A solution 
through superposition also exists for potential flow. The solution for steady flow 
past a circular cylinder with circulation yields 

L = -2npr2, UQ,  D = 0, T = 0. (6) 

In  the general case of the flow past a rotating elliptic cylinder the solution is 
unsteady. No slow-motion solution of the Oseen type is known to the authors. 
For potential flow superposition of‘(2) on the stream function $> for parallel flow 
past a fixed elliptic- cylinder (Lamb 1945, p. 85) results in @‘ = +A + y!!; with 

3; = aU [sinh 7 sin 8 cos Qt’ - Gosh 7 cos 6 sin QZt’ 

- exp (rl - 7) (sinh y1 sin 8 cos QZt’ - cosh yl cos 8 sin Qt’ ) ] .  (7) 

The lift (and the drag) is zero unless a circulation is superposed. The torque is 
T = -npa2U2 sin at’ cos QZt’. Here t’ denotes the time. 

The potential-flow solution $‘ given by (2) and (7) contains one flow parameter 
in addition to the geometric parameter vl. By making 1c.’ dimensionless according 
to +‘ = aU$ one obtains the Rossby number Ro = U/Qa or, by using the chord 
d = 2a cosh rl, the parameter Ro+, = 2U/Qd. Viscous fluid flow past a rotating 
cylinder in a fluid a t  rest is also characterized by one flow parameter only: the 
Reynolds number RE = 4Qa2/v or Rt?, = Q2d2/v. However, the solutions for 
viscous fluid flow past a rotating cylinder in a parallel stream contain two flow 
parameters : the Rossby number Ro4, and the Reynolds number (defined either 
by Re, = Udlv or BEd = Qd2/v).  

A number of papers have been published in which flows with various combina- 
tions of Rod, and Re, (or RE,) are discussed. These studies are based either on 
perturbation techniques or on numerical (finite-difference or finite-element) 
methods. 

Moore (1957) investigated steady flow past a rotating circular cylinder for 
Roj, < 1 and RE, B 1, where Roy is used as a perturbation parameter. This case 
represents a rapidly rotating body with a circular boundary layer in an otherwise 
irrotational flow. It may be recalled that for a circular cylinder three types of 
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potential flow can be distinguished: flow with two stagnation points a t  the body 
when Rot, > 0.5, flow with one stagnation point when Roy = 0.5 and flow with 
no stagnation point a t  the body when Rot, < 0.5. Moore’s solution for Rogd < 1 
falls in the last category. To the approximation considered the drag is zero and the 
lift equal to that in (6),  which is the Kuttdoukowsky formula. 

Hocking (1974) considered the flow past a thin elliptic cylinder with end plates 
in a rapidly rotating fluid. The three-dimensional nature of the problem gives rise 
to  Coriolis effects through the Ekman layer. In  two-dimensional flows the Coriolis 
force does not appear (see $3).  In  Hocking’s model the flow is kept steady by 
assuming that the Rossby number based on the distance between the end plates is 
vanishingly small. 

For moderate values of Rot, and Re, the time-dependent flow past a circular 
cylinder was studied by Thoman & Szewcyzk (1966) using a finite-difference 
scheme. For Re, = 200 and Ro&, = 1 the flow has two stagnation points at  the 
body, whereas for Rag, < 0.5 there is no stagnation point. Results for other 
values of Re, show that the extent of the circular flow region near the cylinder 
decreases wit,h increasing Re, when Rot, < 0.5. 

Recently, a finite-element technique was applied by Argyris & Mareczek 
(1974) to the steady slow motion of a rotating circular cylinder in a parallel 
channel. 

This paper presents solutions for the general unsteady flow around rotating 
elliptic cylinders either in a fluid a t  rest or in a parallel stream. The non-rotating 
case was studied by Lugt & Haussling (1974) for Re, < 200. Preliminary results 
from the rotating case and a description of the numerical methods involved 
were published in Lugt & Ohring (1 974a, b) .  

2. A note on the reference frame 
Steady motions imply the Eulerian form of flow description and the selection 

of one specific reference frame, i.e. the reference frame in which the flow becomes 
steady. In  this steady-state system streamlines, pathlines and streaklines co- 
incide. In  unsteady flows no preferred reference frame exists, and the frame must 
be selected on the basis of other criteria. Furthermore, streamlines, pathlines 
and streaklines generally do not coincide. 

For two-dimensional flow past a cylinderwith constant translational speed - U 
and angular velocity - 0, four different reference frames may be distinguished. 
If U* and Q* are the translational and angular velocities of the body relative to 
the reference frame, these four different frames are as follows. 

(1) U* = 0, !2* + 0; this frame is fixed to the body with regard to translation, 
but the body rotates relative to it. 

( 2 )  U* =l= 0,  Q* += 0; the body is in translational and rotational motion relative 
to this frame. For U* = - U and Q* = - Q this frame is fixed to the fluid (at rest) 
a t  infinity . 

(3) U *  = 0, Q* = 0; this frame is fixed to the body. 
(4) U* =+ 0, !2* = 0; this frame does not rotate relative to the body, but the 

body has a translational motion relative to it. 
9 F L Y  79 
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Frame 1 

Frame 3 Frame 4 

FIGURE 1. Streamline patterns for flow past a rotating elliptic cylinder in four different 
reference frames. Re = 200, Ro = 2, v1 = 0.1, t = 10.46. 

The behaviour of streamlines for the four different cases is illustrated in 
figure 1. For non-vanishing U* and sZ* these quantities are chosen to be U* = - U 
and a* = - a. Since the streamlines are not invariant with respect to Galilean 
transformations (and certainly not invariant with respect to rotational trans- 
formations), all streamline patterns differ from each other. In contrast, the vor- 
ticity field (see figure 15b) is invariant and differs under rotational transforma- 
tions only by a constant. The superiority of the vorticity field over the streamline 
patterns for explaining flow characteristics will be demonstrated in $5. It may be 
pointed out that the ability to produce vorticity patterns is one of the advantages 
of ‘computer experiments ’ over wind-tunnel experiments, where the measure- 
ment of vorticity is very difficult. 

In  the study of streamline patterns the use of frame I is appealing because of its 
analogy to instantaneous streamline photos of a rotating body in a wind tunnel. 
Frame 3 is advantageous since the body contour is a streamline, and flow be- 
haviour near the body (like separation) can be examined. Frames 2 and 4 are of 
less interest in the present investigation. 

In  time-dependent flows the identification of vortices and separated regions 
at the body becomes difficult. Although frame 3 is best suited (compared with the 
other three frames) for the discussion of flow separat’ion, since the body contour 
is a streamline, the flow is still time dependent, and the definition of separation in 
a steady-state flow, w = 0 and aw/aO < 0 at 7 = ql, does not hold. Only a reference 
frame fixed with respect to a ‘separation line’ and moving along the surface 
would make the flow locally steady (Rott 1956). However, in an approximate 
way, frame 3 is still useful to study flow sepa,ration at the body. 
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FIGURE 2. On a vortex (a) a constant parallel flow from right to left is superposed. In ( b )  the 
velocity of the parallel flow is small relative to the angular velocity of the vortex; in (0 )  the 
velocity of the parallel flow is large. 

A difficulty similar to the problem of flow separation arises when the position 
of a vortex must be determined. Here again the definition ofa vortex is not clear 
(Lugt 1974). Without elaborating on the difficulties two aspects are pointed 
out. 

(i) A separated vortex (as distinct from flow separation) is defined to exist 
when a relative extremum of vorticity occurs in a homogeneous fluid. Such a 
vortex detached from the body manifests itself in streamline patterns consisting 
of either closed or wavy streamlines, depending on whether the vortex is at rest or 
moving relative to the reference frame (see figure 2). In figure 1 the separated 
vortex (which is about one plate length behind the body) is thus seen in frames 
1 and 2 as closed streamlines and in frames 3 and 4 as wavy streamlines. Hence 
streamline pictures give information on the movement of vortices relative to the 
reference frame. The closed streamlines in frames 3 and 4 are due to the rotation 
of the frame and are circular a t  infinity. The centre of rotation coincides 
with the rotation centre of the body only when the translational motion 
vanishes. 

(ii) The existence of the vorticity extremum may be used as the definition of a 
detached vortex. However, this definition does not hold for a vortex attached to 
a body, since the vorticity extremum occurs at the body surface. Either the re- 
circulation region at the body surface is not considered a vortex, or the definition 
of a vortex must be based on circular or spiral pathlines in a local reference frame 
fixed to the centre of the vortex (Lugt 1974). The latter definition of an attached 
vortex is used in this paper. 

3. Formulation of the problem 
For the mathematical formulation of the physical problem outlined in $ 1  the 

Navier-Stokes equations are used, expressed in terms of the vorticity w' and the 
stream function 9'. In 7, 8 co-ordinates the basic equations are 

V'29f  = w' ,  

where h2 = cosh2 7 - cos2 19. 
(9) 

9-2 
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For the case of a rotating body in a fluid a t  rest a t  infinity the following dimen- 
sionless variables are introduced: w' = QG, $' = Qa2$, t' = f/sZ, RE = 4a2Q/v 
and V' = a-lV. Equations (8) and (9) then become 

v2$ = 0. (11) 

$ = 0, a$/a7 = o at 7 = ql, (12) 

il$/ae = 0, = cosh q sinh 7 at 7 = 00. (13) 

.i; 9 = - p a  $/a& 6, = h-i,a$/aq. (14) 

The boundary conditions for a frame fixed to the body are 

The velocity components B, and Go are related to $ by 

The computation of the case of a rotating body in a parallel flow requires a 
rescaling of (8) and (9). With o' = ( U / a ) w ,  $' = Ua$, t' = (a /U) t ,  Ro = U/Qa 
and Re = 2aU/v the basic equations become 

V2$ = 0. (16) 

$ = 0, a$/aq = 0 at q = rl, (17) 

The boundary conditions are (figure 3) 

at 7 =a, (18) 

with a(t) = t/Ro being the angle of attack. It may be mentioned that the Coriolis 
term does not appear when the reference frame is changed from an inertial to a 
rotating frame. Thus the display of the four frames in figure 1 can be obtained 
by superposing a parallel flow and/or a rotating fluid, respectively. 

The initial condition which simulates the abrupt start of the body from rest 
consists of the potential-flow solution, (2) and (7), and a vorticity sheet at the 
body surface enforcing the no-slip condition. 

I h-1 aglae = cos (e - t p o )  

h-la$/ay = sin (O-t/Ro) + (hRo)-lcoshysinhr 

The drag, lift and moment coefficients are defined by 

(19) I CD = drag/+pU2acoshql, 
C, = liftlip U2a Gosh rl, 
C,, = torque/bpU2a2 cosh2q,. 

Each consists of two parts. The drag coefficient is the sum of drag due to pressure 
and drag due to friction: CD = C,, + CDF with 

4 $8 aw 277 
CDp = ~ [ t a n h q l c o s a J o  (-) a7 1 sin8d8-sinaS0 (2) a7 1 cosBdO], (20) 
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r B =constant t ’ 

FIGUR.E 3. Elliptic co-ordinate system and definition of angle of attack. 

The lift and moment coefficients may be expressed in a corresponding way 
(Lugt & Haussling 1974). For pure rotation (U se 0)  the torque is made dimen- 

sionless in the form c, = torque/+p~2a4 cosh4 ql, (22) 

with 
2n ” 

4 
cMp = RLcosh2ql/o (q)l 

(24) 

I n  this notation negative values of C,, C, and C, mean respectively drag, lift in 
the direction of the Magnus force, and torque reinforcing the rotation of the body. 

4. Numerical analysis 
A computer program has been developed to construct solutions to the initial/ 

boundary-value problem (15)-( 18). Since a detailed description is given in Lugt & 
Ohring (1974a), it suffices to outline briefly the procedure, to explain the notation 
and to point out novel features of the program. The case of a rotating cylinder in a 
fluid at rest, which was not included previously and which is defined by (10)- 
(13), can be reduced to solving (15)-( 18). All that is required is to set Ro = 1 and 
Re = 0.5Rd and to modify the boundary conditions at infinity. For this case the 
boundary conditions applied in the numerical computation are 

(3 = 2,  = cosh q sinh q at q = q9, < co. ( 2 5 )  

For a rotating body in a parallel stream the boundary conditions are 

a$/aq = h sin (8- a) -t Ro-l cosh q sinh q, w = 2/Ro 

at q = re, < co, 0 < 8-a < in, #n < 8-a < 2n (upstreamhalf), (26a) 

a@ 1 
-+-(U.V)w = 0 
at u 

U 1 [$ + $ (U. V) v- 2 -  (S2 x v) - V- (cosh2 q - sin28)] = O j  u 2R02 8 

at q = r9, < co, &n < 8-a < (downstreamhalf), (26b)  
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where v is the velocity vector and U the velocity vector of the parallel flow at 
infinity. The boundary conditions for the calculation of the non-rotating case are 
discussed in Lugt & Haussling (1974). The subscript 8 denotes the 8 component 
of the bracketed expression. If 8-a  < 0, 277 must be added repeatedly until 

The grid has been chosen in such a way that the infinite domain of integration is 
replaced by a finite network of points ql + (i - 1) AT, ( j  - 8 )  A8 with i = 1, . . . , 97 
a n d j  = 1, ..., 96; Aq = 0.04. 

Although the reference frame fixed to the body is advantageous for obtaining 
accurate values of the vorticity at and near the body surface, the overall $ field is 
not accurate owing to the large values of @ near the outer boundary (Lugt & 
Ohring 1974b). This can be remedied without losing the advantages of a grid 
fixed to  the body by the transformation 

e-a 2 0. 

$ = $* + (2Ro)-1 (Gosh2 7 - sin2 8), w = W* + 21Ro. (27) 

The use of a grid rotating relative to the mainstream introduces a numerical 
difficulty. The discontinuities in a$*/@ and w* at 7 = q9,, 0-a = $77 and #n, 
which grow with advancing time and which were irrelevant for the calculation for 
non-rotating bodies, performed previously (Lugt & Haussling 1974), generate a 
disturbance every time an outer-boundary grid point moves from the downstream 
to the upstream half of the outer boundary. (The influence of the change from the 
upstream to the downstream half is negligible.) These disturbances are felt 
immediately throughout the fluid and cause large errors in the surface vorticity. 
This numerical phenomenon is aggravated a t  about a = 277 and soon after 
renders the solution meaningless (for a > 377). It may be mentioned that at that 
time the vorticity has not yet reached the outer boundary. This difficulty has been 
overcome by smoothing out the discontinuities. The transition was done linearly 
over the outer-boundary arcs 477 < 8-a < $77 and in < 8-a < 877. The con- 
tinuation of the solution in this manner is marked in figure 16 by circles (and the 
uncorrected solution by dots). The computation can then be continued even when 
the vorticity crosses the outer boundary. 

The numerical analysis was carried out largely with the DuFort-Frankel 
scheme for solving the vorticity equation (15) and with the Hockney technique 
for solving the Poisson equation (16). This selection was made after preliminary 
studies with other methods (Lugt & Ohring 1 9 7 4 ~ ) .  

Accuracy has been checked for 0 = 0 by comparing results with those obtained 
by Collins & Dennis (1974) for a circular cylinder from a series-expansion method 
and with experimental data by Honji (Lugt & Haussling 1974), and by using 
various A8 and AT. For a rotating body in a fluid a t  rest, the transient solution for 
a circular cylinder has been compared with the analytic solution of Mallick ( 1  957). 
See 95. It may be pointed out that for small t ( < 0.01) the grid is coarse near the 
cylinder compared with the thickness of the vorticity layer. This affects the 
accuracy of the force and moment coefficients, which require the calculation of the 
vorticity gradient. Accuracy is also diminished for a rapidly rotating cylinder 
with Ro+, = 0.5 and Re, = 200. 

Computations were carried out in double precision on an IBM 360-91 computer. 
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Streamlines are plotted for the values -3.0, -2.8, ..., 0, ..., +2.8, +3.0, equi- 
vorticity lines for - 11.0, - 9.0, ..., + 9.0, + 11.0. 

The following cases have been computed: 

(a )  Rotating cylinder in a fluid a t  rest: 

ql = 0.1, Re", = 400, AH = 0.00375, 

ql = 0.1, RE, = 2000, AH = 0.006, 

ql = 3,  RE, = 400, AH = 0.2. 

( b )  Rotating cylinder in a parallel flow: 

ql = 0.1, a. = n, Re = 200, Ro = 2, At = 0.0025, 

ql = 0.1, a. = in, Re = 200, Ro = 2, At = 0.0025, 

ql = 0.1, a,, = &, Re = 200, Ro = 0.5, At = 0-00125. 

For ql = 0.1 (which may be considered as a 'plate'), Ro w Ro$,, Re w Re, and 
Re" M RE,. Immediately after the abrupt start the time increment At is smaller 
than the above values, which are selected before numerical instability occurs. 

5. Results 
Rotating cylinders in a$uid at rest 

Little is known about the behaviour of rotating elliptic cylinders at low Rey- 
nolds numbers. From the few solutions such as those for transient and steady 
motion of a rotating circular cylinder (Mallick 1957; Lozupone 1967) and from 
the purely translational motion of elliptic cylinders (Lugt & Haussling 1974), one 
infers that three different cases of the transient phase can be distinguished depend- 
ing on the values of the parameters a, qI and RE. In  the first case the approach to 
steady-state solutions is monotonic, for instance, in the transient motion of a 
rotating circular cylinder (fgure 4) and in the translational motion of an elliptic 
cylinder with ql = 0.1 and Re, = 15. In  the second case the approach to a steady 
state is oscillatory, for instance in the translational motion of a cylinder with 
a = 45", ql = 0-1 and Re, = 30. In  the third case, a steady-state solution does not 
exist, and the transient, oscillatory period approaches an oscillatory (periodic) 
final state. An example is the translational motion of a cylinder with ql arbitrary 
and Re, > 45, which represents a KBrmBn vortex street. 

Numerical results for a rotating thin elliptic cylinder have been obtained for 
ql = 0.1, RE = 400 M Re", and 2000. The C,, curves in figures 5 and 6 display 
oscillations which damp out to the steady-state value C, M 0.25 for Re" = 400, 
whereas a periodic state is approached for Re" = 2000. In  this case the average 
value of C,is 0.13 when f - t o o .  The steady-state value for a rotating circular 
cylinder is Cllf = 32n/RE,; that is, for RE, = 400, Cl,, = 0.25, and for Re, = 2000, 
C,, = 0.05. This means that for the lower Reynolds number the change in ql does 
not greatly affect the moment coefficient. For the higher Reynolds number, 
however, the torque decreases with larger ql. 

The oscillatory behaviour of the fluid motion can be explained using figures 7- 
12. After the abrupt start of the cylinder a vortex is shed from each edge and is 
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FIGURE 5 .  CM vs. i and a for an abruptly started rotating thin elliptic cylinder 
with RZ = 400, y1 = 0.1. 

r 

clearly visible in the vorticity patterns. This vortex is swept towards the advanc- 
ing opposite edge, where it causes a suction effect. This results in a minimum of 
C,, at Z = 4.5 for RE = 400. After the vorticity of this vortex has passed the 
advancing edge and amalgamated with thevorticity produced behind that edge, a 
relative maximum of C' is reached at  i? = 6-45. A new cycle starts in which a 
vortex of smaller strength than the earlier one is produced. This vortex follows the 
same path and is absorbed by the vortex behind the advancing edge. The effect 
of the vortex on C, can be studied by plotting the integrand in ( 2 2 )  against 0 
(figure 10). From Z = 29 on, a separated vortex cannot be detected in the computer 

z 
FIGURE 4. Chf vs. t for an abruptly started rotating circular cylinder with RZd = 400, 

y1 = 3. 0, analytical values from Mallick (1957). 
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FIGURE 6. C, ws. i and a for an abruptly started rotating thin elliptic cylinder 
with RB =2000, vII = 0.1. 

ll 

output, only a tongue of vorticity. Figure 9 shows the situation for t’ = 40, which 
is close to the steady state. The case RE = 2000 (figures 1 I and 12) is similar to the 
case RE = 400 except that no damping is observed. 

For a better understanding of the streamline patterns the potential-flow 
solution, which serves as the initial condition, is presented in figure 13. In  a 
reference frame fixed to the body, two recirculatory regions occur at the surface 
of the cylinder. Shortly after the abrupt start of the body a Kutta-type flow past 
the edges develops, similar to the translational case discussed in Lugt & Haussling 
(1974). The detached vortices behind the edges, which are clearly visible in the 
vorticity patterns in figure 8, show up first at Z = 2.10 in the streamlines (figure 7). 
At Z = 1-06 the motion near the body is so slow that no streamlines are printed. 
From Z = 2.10 on attached vortices behind the edges due to viscous effects 
develop. By Z = 5.19 these attached vortices together with the detached vortices 
shed previously form four separated flow regions. At this time C,, reaches its 
relative minimum. At about Z = 6.31, when only two recirculatoryregions at  their 
largest extent exist, (7, reaches its relative maximum. For RE = 2000 the situa- 
tion is similar although more clearly visible in the streamline patterns since the 
vortices are stronger than those for RE = 400. 

Rotating cylinders in a parallel flow 
The more complicated case of a rotating elliptic cylinder in a parallel stream re- 
quires the prescription of the two flow parameters Re and Roinaddition to thegeo- 
metric parameters yl and a,. Re M Re, is kept at 200 with ql = 0.1. For Ro M Roia 
the values 2 and 0.5 are chosen. 
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a=+ n 

a=2 n 

FIUURE 7. Sequence of streamlines around a rotating elliptic cylinder in a fluid at rest at  
infinity for Rd = 400, rl = 0.1, first revolution. The reference frame is fixed to the body, 
the fluid rotates anticloclrwise. Z is given exactly (for three digits), a is given approximately. 

I n  potential flows two types of motion may be considered. For Ro = 0 two 
recirculatory regions exist (figure 13). In  the other limit, Ro = 00, no such re- 
circulatory regions occur. The numerical results show that a t  Ro = 2 (figure 14) 
there are still no recirculatory regions; however, when Ro = 0.5 they do occur. It 
may be pointed out, as was done in the discussion of frame 3 in figure 1, that the 
closed streamlines are due to the rotation of the fluid, and that for Ro > 0 the 
rotation centre does not coincide with the centre of the rotating ellipse. 
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I a=n I 

.v 
t=1.06 

FIGURE 8. Sequence of equi-vorticity lines for the situation of figure 7. 

With the potential-flow solution given as the initial condition, the flow de- 
velopment is displayed in figure 15 for the first revolution for the case Re = 200, 
220 = 2, a,, = 3;. and ql = 0.1 (the continuation to a = 3n is given in Lugt & 
Ohring 1974b). As for a non-rotating plate perpendicular to the flow, two vortices 
are generated behind the two edges. At first, the vortex behind the advancing 
edge is stronger than the one behind the retreating edge because the relative 
flow speed is larger at  the advancing edge. With the passing of time, however, the 
situation reverses, i.e. the vortex behind the retreating edge becomes stronger 
than the one behind the advancing edge. This change is due to the development 
of the newly generatedvortices over a longer rotation period and to the influence of 
the vortices shed previously on the new ones. The vortex behind the retreating 
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FIGURE! 9. Streamlines and equi-vorticity lines for Rd = 400, rl = 0.1 in 
almost steady state (f = 40). 

edge stays close to the body longer than did the previous one or the one behind 
the advancing edge. The latter vortex is stretched during the whole period 
nf Qn < a < n+gn. The streamlines clearly show the dominance of the vortex 
behind the advancing edge in the early phase (1.01 < t < 6-26)  and the reverse 
afterwards. For the case a. = n, which is presented in Lugt & Ohring (1974a), the 
initial situation of a stronger vortex behind the advancing edge does not occur. In  
all cases, however, a vortex is shed after every half-revolution ha = n. 

More details of the flow behaviour can be obtained from the force and moment 
coefficients. Figure 16 shows these coefficients for Re = 200, Ro = 2 and a, = in 
and n. These curves for a, = +n and n reveal a fast adjustment in the initial 
phase. From a = #n onwards the curves almost coincide. For part of the C, 
curves the actual values are plotted using dots and circles so that the amount of 
scattering can be observed. The meaning of the circles was explained in $4. 

The average values of the C, and C, curves are negative as expected since they 
represent the drag and the Magnus force on the body. The average lift-to-drag 
ratio is about unity. The C, curve shows almost autorotating behaviour of the 
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FIUURE 10. Local contribution to the torque vs. 0 for Rd = 400, ql = 0.1 and various 
times. 0 = 0 is at the right edge in figure 7 and increases anticlockwise. -, i? = 4.53; 
--- , Z = 6-41; - * -, f = 8.66; . - - a ,  Z = 10.63. 

body. This means that the positive and negative values of C, almost balance 
each other over one revolution, and that the kinetic energy of the parallel flow is 
almost sufficient for self-sustained spinning. Autorotation for such low Reynolds 
numbers is not surprising, since in wind-tunnel experiments autorotation has been 
observed for Reynolds numbers as low as 100 (Smith 1971). 

The contribution of the frictional part of the total forces is small: C,, and 
CLF are an order of magnitude smaller than C,, and CLp. C,,, is so small, in 
general C,, < 0-03, that it can be neglected. 

The analysis of C, and C, over one period of revolution reveals that the maxi- 
mum drag ( - C,) occurs just before the plate is normal to the flow, and that the 
lift ( - CL) has its maximum value shortly after the plate reaches the horizontal 
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a =f n 

1=3.02 
- 

a = r  
t=3.07 
N 

a=+. a=2n 
N 

t = 6.22 

FIGURE 11. Sequence of streamlines around a rotating elliptic cylinder as in 
figure 7 but for RB = 2000. 

position. This roughly agrees with the behaviour of a non-rotating plate. The 
torque as a function of a behaves approximately like that of the corresponding 
potential flow, i.e. is proportional to - sin 2a. The deviations from this relation 
with respect to the phase and average value are due to the behaviour of the edge 
vortices. 

The role of the edge vortices becomes clear when the results for Ro = 2 are 
compared with those for Ro = 0.5 in figure 17. Although the behaviour of (2, 



Rotating elliptic cylinders 143 

a=:n 
t =  1.07 
N 

a=n 

a=fn 
N 

1 = 2.02 

N 

i = 6.22 

FIGURE 12. Sequence of equi-vorticity lines as in figure 8 but for RE = 2000. 

with regard to a is similar, the two cases are essentially different. For Ro = 0.5 
the rotation is so strong relative to the translation that the vortex behind the 
retreating edge now develops on the other side of the plate. This means that the 
vortices generated at  the edges always rotate in the directiofi opposite to the body 
rotation, as in the case of a rotating body in the fluid at rest (figure 8). Further- 
more, the vortices are shed so slowly that they interfere with the opposite edges. 
This makes the process of vortex shedding much more complicated (figures 18 
and 19). 
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FIGURE 13. Potential flow around a rotating elliptic cylinder with ql = 0.1. The reference 
frame is fixed to  the body; the flow is steady. 

FIGURE 14. Potential flow around a rotating elliptic cylinder in a parallel flow with Ro = 
0.5, q1 = 0-1 and a = 135'. The reference frame is fixed to the body; the flow is unsteady. 
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1 1 

u = t n  + i n  
t=1.01 

I a= n +in 
I t=5.21 

a= n + I n  
f = 6.26 

FIGURE 15 fa). For caption see next page. 

The average values of C, and C, in figure 17 are negative as in the previous 
case although the average C, curve tends to become positive in time. This means 
that the drag would then become a thrust. The average C, values are positive. 
Hence a torque must be applied to keep the body rotating. This behaviour differs 
from that for Ro = 2, for which autorotation is observed. The explanation must 
be sought in the difference in vortex generation behind the edges. 

Immediately after the start a vortex develops behind the retreating edge in 
the form of a vorticity tongue (figure 18, t = 0.26). After half a revolution this 

10 F L M  79 
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c=n+77i  
r=7.31 

a = r + ; n  
I = 8.36 

a=’n 
I=  9.41 

a = 2 n + ; n  
I = 10.46 

a = 2 n + + n  
/=11.51  

(h)  

FIGURE 15. Sequence of streamlines and equi-vorticity lines around a rotating elliptic 
cylinder in a parallel flow for Re = 200, Ro = 2 ,  = 0-1, a,, = &r, first revolution. The 
streamlines are computed in frame 1. 

vortex separates a t  about t = 1.822 and moves away from the body (t = 3.135). 
The advancing vortex is stronger from the beginning, separates before t = 0.51 
and moves away after the body has completed its first revolution (t = 3.135). 
Thus, at this time the two vortices which were generated at the edges after the 
abrupt start are about half a plate length behind the body and ready to be 
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I 

-' 
1 f 3 / for vertical initial position 

I - I - L L  

i n  ?'I 2 n  i n  3 n  f n  4 n  n 3 

L L  1 -  X 
1 2 3 t for horizontal initial position 

FIGURE 16. C,, C,, and C, vus. u (or time) for Re = 200, R o  = 2 ,  rl = 0.1, uo = +7r and 7r. 
- , . . . .ooo, vertical initial position; - - -, horizontal initial position. 

swept away. Since both vortices are rotating anticlockwise it is expected that 
they will revolve anticlockwise about each other as they move away from the 
body. 

Later, however, the process of vortex shedding becomes different as can be 
seen in the sequence of flow patterns for the fourth revolution in figure 19. The 
vortex a t  the retreating edge, which begins to develop a t  t = 9.95, behaves simi- 
larly to that in the first revolution until about t = 11.26. Comparing this instant 
with t = 1.822 in figure 18, one observes that at  t = 11.26 the vortex is not left 
behind and does not move downstream but collides with the opposite, advancing 
edge and is pushed upstream. The vortex remains close to the plate for another 
cycle. This means that during the first four revolutions the period during which a 
vortex develops and is shed has increased from 271 to 3n. The transient state from 
the start to the quasi-steady state is thus not only much longer than for Ro = 2 
but also shows a change in phase. (In fact, the periodic state has not been reached 
at  the end of the computer run when a = 11n; see figure 17.) Another difference 
between the first and the fourth revolution at Ro = 0.5 occurs when the vortices 
are about to escape. Behind the retreating edge a t  the wake side of the body, 
clockwise vorticity is induced by the anticlockwise vortices (t = 10.48 or 12.04), 
which results in the shedding of a clockwise vortex. In  contrast to the situation a t  
t = 3.135, the vortex pair in the wake of the body a t  t = 11.01 or 12.57 shows 
opposite rotation. Its path is directed towards the upper left corner in figure 19. 
The counter-rotation of the strong lower vortex of the pair supports this upward 
movement of the streamlines due to the rotating body (figure 20). A comparison 

10-2 
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FIGURE 17. C,, C, and C, vs. a (or time) for Re = 200, Ro = 0.5, rl = 0.1 and a,, = &T. 
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u = n  

t=0.791 

a=n+,L n 

t= 1.041 

a = n + f n  

I= 1.572 

FIGURE 18(a). For caption see next page. 
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I I 
I 

u=2n  

t =2.353 

I 1 . 
a=2n+An 

t = 2.603 

a=7nfi n 

t=3 135 

( h )  

FIGURE 18. Sequence of streamlines and equi-vorticity lines for Re = 200, Ro = 0.5, 
ql = 0.1, a0 = &T, first revolution. The streamlines are computed in frame 1. 

of the two half-cycles 6n+&~ < a < 7n+2p and i’n+&r < a < 8n+&7~ shows 
that they do not completely match (figures 19 and 20). This can probably be 
explained by the phase change of the vortex shedding. 

It is also conjectured that the drastic change in amplitude of C, and CL in 
figure 17 after every half-revolution 7~ is due to that phase adjustment. Arigorous 
proof for t3his is difficult with the numerical data available. The deviations of the 



Rotating elliptic cylinders 151 

a=Gn+$n  
t = 9.70 

u = 6  n f z n  
t=9.95 

u =7n 
t = 10.20 

a=7n+in 
t=lO48 

u = l n  +f n 
t = l O 7 3  

a = l n +  i n  
t = l l O I  

FIGURE 19 (a). For caption see next page. 

flow characteristics immediately a t  the body from one half-revolution to the 
other are quite subtle, although the resulting differences in C, and C, are large. 

No great change in the amplitudes of the C, curve in figure 17 is apparent. This 
means that the distance between the geometric centre of the body and the centre 
of pressure varies in such a way that it compensates for the variation in the C, 
and C, amplitudes. 
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a = I n + $  K 

r=11.26 

a = J n + $ n  
[ = I 1  51 

a=8n  
t = l l  79 

a=8n+:a 
f=12 04 

a = 8 n + f  K 

1 =  12 29 

a= 8 n + n 
f =  12 57 

(b) 

FIGURE 19. Sequence of streamlines and equi-vorticity l i e s  for Re = 200, Ro = 0.5, 
v1 = 0.1, a,, = &r, fourth revolution. The streamlines are computed in frame 1. 
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a=In+:n  a = l n + ;  n 
t =  11.01 

I 
FIGURE 20(a) .  For caption see next page. 
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t=12.29 

FIGURE 20. Same situation as in figure 19 but in frame 3. 

The difference in the average value of C,, between Ro = 2 and 0.5 is explained 
by the strength of the vortex behind the retreating edge. The thin boundary layer 
from the front stagnation point to the retreating edge (figure 15, t = 8.36) causes 
a torque which supports the body's rotation. The comparatively long time 
available for the development of this layer results in the production and shedding 
of a relatively large amount of clockwise vorticity. In  contrast to this, such a 
boundary layer in front of the body cannot develop for Ro = 0.5 because of the 
presence of the front vortex (t = 9-95 in figures 19 and 20). The influence of the 
various vortices on the local moment coefficient is demonstrated in figure 21. For 
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Ro = 2 RO = 0.5 

8 

FIGURE 21. Local contribution to the torque vs. 8 for Re = 200, v1 = 0.1. -, Ro = 2 at 
t = 10.46; - - -, Ro = 0.5 at 12.04. In figures 15 and 19, 8 = 0 is for these instants at the 
retreating edge and increases anticlockwise. 

Ro = 0.5 two phenomena counteract the tendency of the retreating-edge flow to 
support the body rotation: (i) the presence of the front vortex, causing a suction 
effect (0  < 0 < in), and (ii) the opposing influence of the strong vortex behind 
the advancing edge (n- < 8 < #n), which is large relative to the supporting part 
(gn- < e < 2n-). 

The authors would like to thank Dr H. J. Haussling for helpful discussions, in 
particular for suggesting the transformation (27). 
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